Data-driven robust optimization based on kernel learning

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data-driven robust optimization based on kernel learning

We propose piecewise linear kernel-based support vector clustering (SVC) as a new approach tailored to data-driven robust optimization. By solving a quadratic program, the distributional geometry of massive uncertain data can be effectively captured as a compact convex uncertainty set, which considerably reduces conservatism of robust optimization problems. The induced robust counterpart proble...

متن کامل

Data-driven robust optimization

The last decade witnessed an explosion in the availability of data for operations research applications. Motivated by this growing availability, we propose a novel schema for utilizing data to design uncertainty sets for robust optimization using statistical hypothesis tests. The approach is flexible and widely applicable, and robust optimization problems built from our new sets are computation...

متن کامل

Concordance-Based Data-Driven Learning Activities and Learning English Phrasal Verbs in EFL Classrooms

In spite of the highly beneficial applications of corpus linguistics in language pedagogy, it has not found its way into mainstream EFL. The major reasons seem to be the teachers’ lack of training and the unavailability of resources, especially computers in language classes. Phrasal verbs have been shown to be a problematic area of learning English as a foreign language due to their semantic op...

متن کامل

Likelihood robust optimization for data-driven problems

We consider optimal decision-making problems in an uncertain environment. In particular, we consider the case in which the distribution of the input is unknown, yet there is some historical data drawn from the distribution. In this paper, we propose a new type of distributionally robust optimization model called the likelihood robust optimization (LRO) model for this class of problems. In contr...

متن کامل

Data-driven Distributionally Robust Polynomial Optimization

We consider robust optimization for polynomial optimization problems where the uncertainty set is a set of candidate probability density functions. This set is a ball around a density function estimated from data samples, i.e., it is data-driven and random. Polynomial optimization problems are inherently hard due to nonconvex objectives and constraints. However, we show that by employing polyno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Chemical Engineering

سال: 2017

ISSN: 0098-1354

DOI: 10.1016/j.compchemeng.2017.07.004